


Schematic components that have been frozen by the user will appear with blue reference designators.

## **Power Supply Input**

| Var    | Value  | Units | Description                                 |
|--------|--------|-------|---------------------------------------------|
| VACMIN | IN 170 |       | Minimum Input AC Voltage (Manual Overwrite) |
| VACMAX | 270    | V     | Maximum Input AC Voltage (Manual Overwrite) |
| FL     | 50     | Hz    | Line Frequency (Manual Overwrite)           |
| TC     | 2.07   | ms    | Input Rectifier Conduction Time             |
| Z      | 0.70   |       | Loss Allocation Factor                      |
| η      | 80.0   | %     | Efficiency Estimate (Target)                |
| VMIN   | 89.5   | V     | Minimum DC Input Voltage                    |
| VMAX   | 381.8  | V     | Maximum DC Input Voltage                    |

# **Input Section**

| Var        | Value | Units | Description                                     |
|------------|-------|-------|-------------------------------------------------|
| Fuse       | 3.00  | A     | Input Fuse Rated Current                        |
| IAVG       | 2.38  | A     | Average Diode Bridge Current (DC Input Current) |
| Thermistor | 3.30  | Ω     | Input Thermistor                                |

## **Device Variables**

| Var                | Value             | Units | Description                                                      |  |
|--------------------|-------------------|-------|------------------------------------------------------------------|--|
| Device             | TOP271EG          |       | PI Device Name (Manual Overwrite).                               |  |
| BVDSS              | 725               | v     | Drn-Src Bkdn Voltage                                             |  |
| Current Limit Mode | Default           |       | Device Current Limit Mode                                        |  |
| OVP_FLAG           | NO                |       | Output Overvoltage Protection Enabled                            |  |
| PO                 | 295.07            | W     | Total Output Power                                               |  |
| VDRAIN Estimated   | 578.93            | V     | Estimated Drain Voltage                                          |  |
| VDS                | 10.00             | V     | On state Drain to Source Voltage                                 |  |
| FS                 | 132000            | Hz    | Switching Frequency (at VMIN and Full Load)                      |  |
| KP                 | 0.655             |       | Continuous/Discontinuous Operating Ratio (at VMIN and Full Load) |  |
| DMAX               | 0.569             |       | Maximum Duty Cycle (at VMIN and Full Load)                       |  |
| КІ                 | 1.00              |       | Current Limit Reduction Factor (Manual Overwrite)                |  |
| ILIMITEXT          | 4.81              | A     | Programmed Current Limit                                         |  |
| ILIMITMIN          | 4.808             | A     | Minimum Current Limit                                            |  |
| ILIMITMAX          | 5.532             | A     | Maximum Current Limit                                            |  |
| PLIM_FLAG          | NO                |       | Enable Overload Power Limiting                                   |  |
| IP                 | 6.219             | A     | Peak Primary Current (at VMIN and Full Load).                    |  |
| IRMS               | 3.280             | A     | Primary RMS Current (at VMIN and Full Load)                      |  |
| RTH_DEVICE         | 3.30              | °C/W  | PI Device Heatsink Maximum Thermal Resistance                    |  |
| DEV_HSINK_TYPE     | Aluminum Extruded |       | PI Device Heatsink Type                                          |  |
| DEV_HSINK_PN       | 530002B02500G     |       | PI Device (Extruded) Heatsink Part Number                        |  |

### **Clamp Circuit**

| Var                  | Value             | Units | Description                 |
|----------------------|-------------------|-------|-----------------------------|
| Сlamp Туре           | RCD + Zener Clamp |       | Clamp Circuit Type          |
| VCLAMP               | 97.09             | V     | Average Clamping Voltage    |
| Estimated Clamp Loss | 5.395             | W     | Clamp total power loss      |
| VC_MARGIN            | 143.16            | V     | Clamp Voltage Safety Margin |

## **Primary Bias Variables**

| Var     | Value | Units | Description                                 |
|---------|-------|-------|---------------------------------------------|
| VB      | 12.0  | V     | Bias Voltage                                |
| IB      | 0.006 | А     | Bias Current                                |
| PIVB 60 |       | V     | Bias Rectifier Maximum Peak Inverse Voltage |
| NB      | 8     |       | Primary Bias Winding Number of Turns        |

### Transformer Construction Parameters

| Var                | Value                    | Units   | Description                                                                  |
|--------------------|--------------------------|---------|------------------------------------------------------------------------------|
| Core Type          | ETD44/22/15              |         | Core Type                                                                    |
| Core Material      | 3F3                      |         | Core Material                                                                |
| Bobbin Reference   | Generic, 9 pri. + 9 sec. |         | Bobbin Reference                                                             |
| Bobbin Orientation | Horizontal               |         | Bobbin type                                                                  |
| Primary Pins       | 6                        |         | Number of Primary pins used                                                  |
| Secondary Pins     | 2                        |         | Number of Secondary pins used                                                |
| USE_SHIELDS        | NO                       |         | Use shield Windings                                                          |
| LP_nom             | 165                      | μΗ      | Nominal Primary Inductance                                                   |
| LP_Tol             | 10.0                     | %       | Primary Inductance Tolerance                                                 |
| NP                 | 63.4                     |         | Calculated Primary Winding Total Number of Turns                             |
| NSM                | 36                       |         | Secondary Main Number of Turns                                               |
| СМА                | 492.76                   | Cmils/A | Primary Winding Current Capacity                                             |
| VOR                | 100.00                   | V       | Reflected Output Voltage                                                     |
| BW                 | 29.50                    | тт      | Bobbin Winding Width                                                         |
| ML                 | 0.00                     | mm      | Safety Margin on Left Width                                                  |
| MR                 | 0.00                     | mm      | Safety Margin on Right Width                                                 |
| FF                 | 114.17                   | %       | Actual Transformer Fit Factor. 100% signifies fully utilized winding window. |
| AE                 | 173.00                   | mm²     | Core Cross Sectional Area                                                    |
| ALG                | 37                       | nH/T²   | Gapped Core Specific Inductance                                              |
| ВМ                 | 840                      | Gauss   | Maximum Flux Density                                                         |
| BP                 | 823                      | Gauss   | Peak Flux Density.                                                           |
| BAC                | 275                      | Gauss   | AC Flux Density for Core Loss                                                |
| LG                 | 5.838                    | mm      | Estimated Gap Length.                                                        |
| L_LKG              | 2.47                     | μΗ      | Estimated primary leakage inductance                                         |
| LSEC               | 20                       | nH      | Secondary Trace Inductance                                                   |

# **Primary Winding Section 1**

| Var            | Value                                                  |     | Description                                                     |  |
|----------------|--------------------------------------------------------|-----|-----------------------------------------------------------------|--|
| NP1            | <b>39</b> Number of Primary Winding Turns i of Primary |     | Number of Primary Winding Turns in the First Section of Primary |  |
| Wire Size      | 24                                                     | AWG | Primary Winding - Wire Size                                     |  |
| Winding Type   | Quadfilar (x4)                                         |     | Primary Winding - Number of Parallel Wire Strands               |  |
| L              | 3.00                                                   |     | Primary Winding - Number of Layers                              |  |
| DC Copper Loss | 0.63                                                   | W   | Primary Section 1 DC Losses                                     |  |

# Primary Winding Section 2

| Var | Value | Units | Description |
|-----|-------|-------|-------------|
|     |       |       |             |

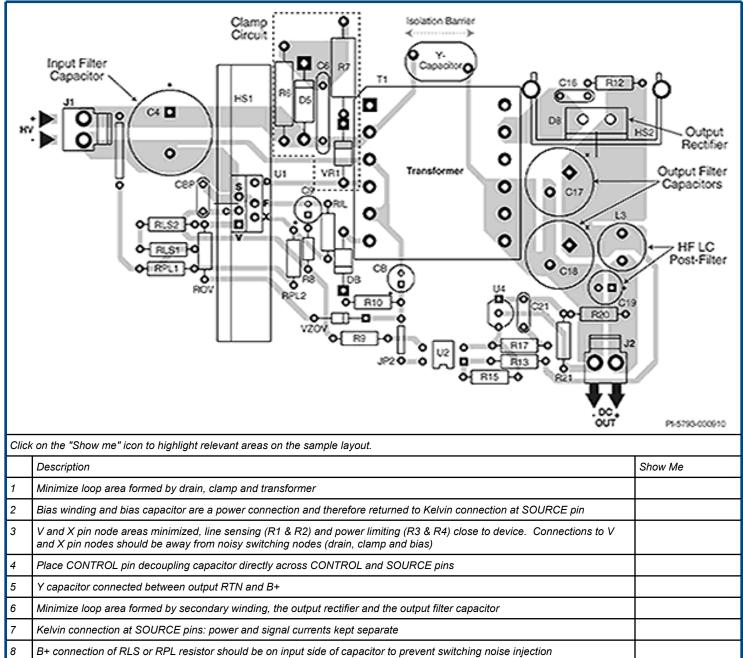
| NP2          | 25                                    |  | Rounded (Integer) Number of Primary winding turns in the second section of primary |
|--------------|---------------------------------------|--|------------------------------------------------------------------------------------|
| Wire Size    | ze 24 AWG Primary Winding - Wire Size |  | Primary Winding - Wire Size                                                        |
| Winding Type | Quadfilar (x4)                        |  | Primary Winding - Number of Parallel Wire Strands                                  |
| L2           | 1.92                                  |  | Primary Number of Layers in 2nd split winding                                      |

### Output 1

| Var               | Value             | Units   | Description                                          |
|-------------------|-------------------|---------|------------------------------------------------------|
| VO                | 58.00             | V       | Typical Output Voltage                               |
| 10                | 5.00              | A       | Output Current                                       |
| VOUT_ACTUAL       | 58.00             | V       | Actual Output Voltage                                |
| NS                | 36                |         | Secondary Number of Turns                            |
| Wire Size         | 24                | AWG     | Wire size of secondary winding                       |
| Winding Type      | Trifilar (x3)     |         | Output winding number of parallel strands            |
| L_S_OUT           | 2.75              |         | Secondary Output Winding Layers                      |
| DC Copper Loss    | 2.42              | W       | Secondary DC Losses                                  |
| VD                | 1.70              | V       | Output Winding Diode Forward Voltage Drop            |
| VD                | 1.70              | V       | Output Winding Diode Forward Voltage Drop            |
| PIVS              | 272.78            | V       | Output Rectifier Maximum Peak Inverse Voltage        |
| ISP               | 10.772            | A       | Peak Secondary Current                               |
| ISRMS             | 4.939             | A       | Secondary RMS Current                                |
| ISRMS_WINDING     | 4.939             | A       | Secondary Winding RMS Current                        |
| CMAS              | 245               | Cmils/A | Secondary Winding Current Capacity                   |
| RTH_RECTIFIER     | 6.35              | °C/W    | Output Rectifier Heatsink Maximum Thermal Resistance |
| OR_HSINK_TYPE     | Aluminum Extruded |         | Output Rectifier Heatsink Type                       |
| OR_HSINK_PN       | 533402B02552G     |         | Output Rectifier (Extruded) Heatsink Part Number     |
| со                | 0 x 1             | μF      | Output Capacitor - Capacitance                       |
| IRIPPLE           | 0.000             | A       | Output Capacitor - RMS Ripple Current                |
| Expected Lifetime | 8000              | hr      | Output Capacitor - Expected Lifetime                 |

### Feedback Circuit

| Var                 | Value | Units | Description                   |
|---------------------|-------|-------|-------------------------------|
| DUAL_OUTPUT_FB_FLAG | NO    |       | Get feedback from 2 outputs   |
| SF_FLAG             | NO    |       | Soft Finish Circuits use flag |
| TYPE_3CTRL_FLAG     | NO    |       | Phase Boost Network flag      |

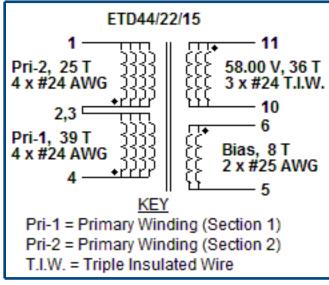

High output current Flyback design.

Use parallel low ESR output capacitors, reduce secondary ripple currents by reducing VOR and KP.

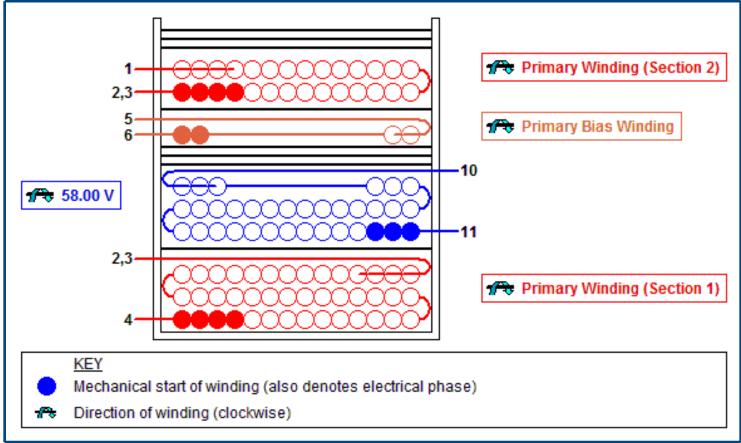
The regulation and tolerances do not account for thermal drifting and component tolerance of the output diode forward voltage drop and voltage drops across the LC post filter. The actual voltage values are estimated at full load only.

Please verify cross regulation performance on the bench.

### **Board Layout Recommendations**




## **Bill Of Materials**


| lte<br>m # | Quantity | Part Ref              | Value             | Description                                                                      | Mfg                 | Mfg Part Number      |
|------------|----------|-----------------------|-------------------|----------------------------------------------------------------------------------|---------------------|----------------------|
| 1          | 1        | BR1                   | PB66-BP           | 600 V, 6 A, Standard Recovery Bridge, PB-6                                       | мсс                 | PB66-BP              |
| 2          | 1        | C1                    | 0.039 nF          | 0.039 nF, 380 VAC, Film, X Class                                                 | Vishay BCcomponents | VY1471K31Y5UQ63V0    |
| 3          | 1        | C2                    | 68 µF             | 68 μF, 450 V, High Voltage Al Electrolytic, (25 mm x 22 mm)                      | Epcos               | B43644A5686M000      |
| 4          | 1        | С3                    | 15 nF             | 15 nF, 630 V, High Voltage Ceramic                                               | TDK                 | CGA6L4NP02J153J160AA |
| 5          | 1        | C4                    | 0.1 μF            | 0.1 μF, 16 V, Ceramic, X7R                                                       | AVX Corp            | 0603YC104K4T4A       |
| 6          | 1        | C5                    | 47 μF             | 47 μF, 10.0 V, Electrolytic, Gen Purpose, 1000 mΩ, (5.2 mm x 6.3 mm)             | United Chemi-Con    | EMVY100ADA470MF55G   |
| 7          | 1        | C6                    | 0.47 nF           | 0.47 nF, 440 VAC, Ceramic, Y Class                                               | Vishay BCcomponents | VY2471K29Y5SS63V7    |
| 8          | 1        | C7                    | 18 pF             | 18 pF, 1 kV, High Voltage Ceramic                                                | Murata              | GRM31A7U3A180JW31D   |
| 9          | 1        | C8                    | 10 μF             | 10 $\mu$ F, 50 V, Electrolytic, Gen Purpose, 1000 m $\Omega$ , (6.1 mm x 6.3 mm) | Rubycon             | 50TRV10M6.3X6.1      |
| 10         | 1        | C9                    | 0.47 μF           | 0.47 μF, 100 V, Electrolytic, Low ESR, 270 mΩ, (11 mm x 5 mm)                    | Nichicon            | UVR2AR47MDD          |
| 11         | 1        | C10                   | 100 μF            | 100 $\mu$ F, 100 V, Electrolytic, Low ESR, 170 m $\Omega$ , (16.5 mm x 16 mm)    | Panasonic           | EEE-FK2A101AM        |
| 12         | 1        | C11                   | 15 nF             | 15 nF, 50 V, Ceramic, X7R                                                        | Kemet               | C0805C153K5RACTU     |
| 13         | 1        | D1                    | Undefined         | 1000 V, 200 A, Fast Recovery, 75 ns, Undefined                                   | -                   | Undefined            |
| 14         | 1        | D2                    | FDLL4448          | 100 V, 0.3 A, Fast Recovery, 4 ns, SOD-80                                        | ON Semiconductor    | FDLL4448             |
| 15         | 1        | D3                    | STTH20R04G-T<br>R | 400 V, 20 A, Ultrafast Recovery, 45 ns, D2PAK                                    | STMicroelectronics  | STTH20R04G-TR        |
| 16         | 1        | F1                    | 3 A               | 350 VAC, 3 A, Glass Cartridge, Time Lag Fuse                                     | Bel Fuse Inc.       | 2JS 3-R              |
| 17         | 1        | HS1                   | 530002B02500<br>G | 2.6 °C/W TO-220. Heatsink for use with Device U1.                                | Aavid               | 530002B02500G        |
| 18         | 1        | HS2                   | 533402B02552<br>G | 5 °C/W TO-220. Heatsink for use with Rectifier D3.                               | Aavid               | 533402B02552G        |
| 19         | 1        | L1                    | 7 mH              | 7 mH, 3.5 A                                                                      | Wurth Elektronik    | 744834407            |
| 20         | 1        | L2                    | 3.3 µH            | 3.3 µН, 7.6 А                                                                    | Bourns Inc.         | PM5022-3R3M-RC       |
| 21         | 5        | R1, R2, R3,<br>R4, R5 | 36 kΩ             | 36 kΩ, 5 %, 2 W, Metal Oxide Film                                                | Generic             |                      |
| 22         | 1        | R6                    | 5.1 Ω             | 5.1 Ω, 5 %, 0.25 W, Thick Film                                                   | Generic             |                      |
| 23         | 2        | R7, R8                | 4.02 MΩ           | 4.02 MΩ, 1 %, 0.25 W, Thick Film                                                 | Generic             |                      |
| 24         | 1        | R9                    | 6.8 Ω             | 6.8 Ω, 5 %, 0.125 W, Thick Film                                                  | Generic             |                      |
| 25         | 1        | R10                   | 560 Ω             | 560 Ω, 5 %, 0.5 W, Thick Film                                                    | Generic             |                      |
| 26         | 1        | R11                   | 40200 Ω           | 40200 Ω, 1 %, 0.125 W, Thick Film                                                | Generic             |                      |
| 27         | 1        | R12                   | 1 kΩ              | 1 kΩ, 5 %, 0.125 W, Thick Film                                                   | Generic             |                      |
| 28         | 1        | R13                   | 255 kΩ            | 255 kΩ, 1 %, 0.125 W, Thick Film                                                 | Generic             |                      |
| 29         | 1        | R14                   | 11.5 kΩ           | 11.5 kΩ, 1 %, 0.125 W, Thick Film                                                | Generic             |                      |
| 30         | 1        | RT1                   | 3.3 Ω             | NTC Thermistor 3.3 Ω, 4.5 A                                                      | Murata              | PRG18BC3R3MM1RB      |

| 31 | 1 | T1  | ETD44/22/15       | 3F3 Core Material<br>See Transformer Construction's Materials List for complete information | Epcos              | B66365-G-X127 |
|----|---|-----|-------------------|---------------------------------------------------------------------------------------------|--------------------|---------------|
| 32 | 1 | U1  | TOP271EG          | TOPSwitch-JX, TOP271EG, eSIP-7C                                                             | Power Integrations | TOP271EG      |
| 33 | 1 | U2  | LTV-826S          | Optocoupler LTV-826S , 80 V, CTR 300 - 600 %, 4-SMD                                         | Liteon             | LTV-826S      |
| 34 | 1 | U3  | LM431ACM/NO<br>PB | 2.495 V, Shunt Regulator IC, 2 %, SOIC-8                                                    | Texas Instruments  | LM431ACM/NOPB |
| 35 | 1 | VR1 | P6SMB120CA        | 120 V, 5 W, 5 %, DO-214AA, TVS                                                              | Vishay             | P6SMB120CA    |

### **Electrical Diagram**



#### **Mechanical Diagram**



### Winding Instruction

#### Primary Winding (Section 1)

Start on pin(s) 4 and wind 39 turns (x 4 filar) of item [5]. in 3 layer(s) from left to right. Winding direction is clockwise. At the end of 1st layer, continue to wind the next layer from right to left. At the end of 2nd layer, continue to wind the next layer from left to right. On the final layer, spread the winding evenly across entire bobbin. Finish this winding on pin(s) 2,3.

Add 1 layer of tape, item [3], for insulation.

#### Secondary Winding

Start on pin(s) 11 and wind 36 turns (x 3 filar) of item [6]. Spread the winding evenly across entire bobbin. Winding direction is clockwise. Finish this winding on pin(s) 10.

Add 3 layers of tape, item [3], for insulation.

**Primary Bias Winding** 

Start on pin(s) 6 and wind 8 turns (x 2 filar) of item [7]. Winding direction is clockwise. Spread the winding evenly across entire bobbin. Finish this winding on pin(s) 5.

Add 1 layer of tape, item [3], for insulation.

#### Primary Winding (Section 2)

Start on pin(s) 2,3 and wind 25 turns (x 4 filar) of item [5]. in 2 layer(s) from left to right. Winding direction is clockwise. At the end of 1st layer, continue to wind the next layer from right to left. At the end of 2nd layer, continue to wind the next layer from left to right. On the final layer, spread the winding evenly across entire bobbin. Finish this winding on pin(s) 1.

Add 3 layers of tape, item [3], for insulation.

#### **Core Assembly**

Assemble and secure core halves. Item [1].

#### Varnish

Dip varnish uniformly in item [4]. Do not vacuum impregnate.

#### Comments

| 1. Pins 2 and 3 are electrically shorted to each other on the PCB via a copper trace. |
|---------------------------------------------------------------------------------------|
| 2. Use of a grounded flux-band around the core may improve the EMI performance.       |

3. For non margin wound transformers use triple insulated wire for all secondary windings.

#### **Materials**

| ltem | Description                                                                |  |
|------|----------------------------------------------------------------------------|--|
| [1]  | Core: ETD44/22/15, 3F3, gapped for ALG of 37 nH/T <sup>2</sup>             |  |
| [2]  | ] Bobbin: Generic, 9 pri. + 9 sec.                                         |  |
| [3]  | Barrier Tape: Polyester film [1 mil (25 μm) base thickness], 29.50 mm wide |  |
| [4]  | Varnish                                                                    |  |
| [5]  | Magnet Wire: 24 AWG (0.55 mm), Solderable Double Coated                    |  |
| [6]  | Triple Insulated Wire: 24 AWG (0.55 mm)                                    |  |
| [7]  | Magnet Wire: 25 AWG (0.45 mm), Solderable Double Coated                    |  |

### **Electrical Test Specifications**

| Parameter                   | Condition                                                                                                 | Spec |
|-----------------------------|-----------------------------------------------------------------------------------------------------------|------|
| Electrical Strength, VAC    | 60 Hz 1 second, from pins 1,2,3,4,5,6 to pins 10,11.                                                      | 3000 |
|                             | Measured at 1 V pk-pk, typical switching frequency, between pin 1 to pin 4, with all other Windings open. | 165  |
| Tolerance, ±%               | Tolerance of Primary Inductance                                                                           | 10.0 |
| Maximum Primary Leakage, µH | Measured between Pin 1 to Pin 4, with all other Windings shorted.                                         | 2.47 |

Although the design of the software considered safety guidelines, it is the user's responsibility to ensure that the user's power supply design meets all applicable safety requirements of user's product.

| Desc  | ription                                                                         | Fix                                                                                                                                                                                   | Ref. # |
|-------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Peak  | primary current exceeds device current limit.                                   | Select larger PI device, increase minimum input voltage (VACMIN<br>or VDCMIN), increase reflected output voltage (VOR), decrease<br>KP, increase input capacitor (CIN) if applicable. |        |
| Trans | former windings do not fit in the winding window                                | Use a larger transformer                                                                                                                                                              | 712    |
| Gap I | ength too big.                                                                  | Decrease transformer size, decrease secondary turns (NS), decrease KP.                                                                                                                | 217    |
| PI de | vice may be too small for continuous output power.                              | Select larger Pl device.                                                                                                                                                              | 207    |
| Drain | voltage close to BVDSS at maximum OV threshold.                                 | Verify BVDSS during line surge, decrease VUVON_MAX or reduce VOR.                                                                                                                     | 237    |
|       | tor value of RF2 is too large and may not provide enough<br>or error amplifier. | Decrease RF2                                                                                                                                                                          | 606    |
| Peak  | flux density is low but design will work.                                       | Choose smaller core size, decrease secondary turns (NS), decrease reflected output voltage (VOR), decrease KP.                                                                        | 220    |